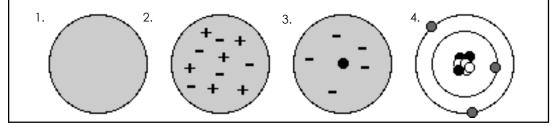

Chemistry topic 1: Atomic structure


1. Keywords	
1. Atom	The smallest possible piece of an element. Has a radius of 0.1nm (or 1x10 ⁻¹⁰ m)
2. Element	A substance in which all the atoms have the same atomic number
3. Isotope	Atoms with the same number of protons but different numbers of neutrons
4. Molecule	Two or more atoms bonded together
5. Compound	Two or more different atoms bonded together
6. Mixture	At least two different elements or compounds together. Can be separated easily
7. Nucleus	The centre of an atom. Contains protons and neutrons
8. Proton	A positively charged particle found in the nucleus
9. Neutron	A neutral particle found in the nucleus. Has no charge
10. Electron	A negatively charged particle found in energy levels (shells) around the nucleus

Particle	Relative mass	Relative charge	Location				
Proton	1	+1	Nucleus				
Neutron	1	1 0 1					
Electron	0	Shells					
	Key		_				
relative atomic mass atomic symbol name atomic (proton) number 1 H hydrogen 1							
4. History	of the atom						
Discover	/ By		Mode				

3. Using the periodic table								
Number of	Is the	Found by						
Protons	Atomic (proton) number	Smaller number on periodic table						
Electrons	Atomic (proton) number	Smaller number on periodic table						
Neutrons	Difference between the atomic mass and atomic number	Big number – small number						

4. History of the a	tom		
Discovery	Ву	Model	Diagram
Solid particle called atom	John Dalton	Particle: solid spheres	1
The electron	JJ Thompson	Plum pudding: positive 'cake' with negative 'plums'	2
Nucleus	Rutherford	Nuclear: Positive nucleus surrounded by electrons	3
Neutron	James Chadwick	Nuclear: Now with protons and neutrons in nucleus	3
Energy levels (shells)	Niels Bohr	Planetary: Electrons now 'orbit' in different shells	4

5. Electron arrangement rules							
1.	Always fill from the inside to the outside						
2.	The first shell can only hold 2 electrons						
3.	The second and third can hold 8 electrons						

6. History of the Periodic Table							
Developed by	Dmitri Mendeleev , a Russian scientist.						
Arranged	In order of atomic mass , and by their chemical properties						
What was special about it?	Predicted the existence of other elements not discovered, and left gaps for them in his						
	table						

7. Properties – metals and non-metals									
Property	Metals	Non-metals							
Density	High (they feel heavy for their size)	Low (they feel light for their size)							
Strength	Strong	Weak							
Malleable or non- malleable	Malleable (they bend without breaking)	Brittle (they break or shatter when hammered)							
Conduction of heat	Good	Poor (they are insulators)							
Conduction of electricity	Good	Poor (they are insulators) apart from graphite							

		8.	Layo	o tuc	f the	e per	iodi	c tal	ole											
Period	No. of shells		Groups 1 2 3 4 5 6 7										0							
1	1		Ļ	Ļ						н										He
2	2		Li Na	Be Mg											B Al	C Si	N P	o s	F	Ne Ar
3	3	Periods	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
4	4	Peri	Rb Cs	Sr Ba	Y La	Zr Hf	Nb Ta	Mo W	Tc Re	Ru Os	Rh Ir	Pd Pt	Ag Au	Cd Hg	In Tl	Sn Pb	Sb Bi	Te Po	l At	Xe Rn
5	5		Fr	Ra	Ac															
6	6			A	lkal	i me	tals				H	lalo	gens	;						
7	7			T	rans	sitio	n m	etals	6		► N	obl	e ga	ses						
TL/DR:		Gr	oup)				1	1	2	3		4		5		6	-/	7	0
Tells you're the			Electrons in outer shell				1	4	2	3		4		5		6	7	7	8*	
		Charge of ion					+1	+	2	+3	3	N/A	`	-3		-2	-	1	N/A	
Period ne Tells you many sh	how		Number of covalent bonds				٢	1/A	N,	/A	N/J	A	4		3		2	1		N/A
,		N/	A =	not	appl	icab	ole (c	does	not	do i	†)									
																	(* E	Exce	ept H	Heliur

9. Properties	s – Groups 1 ar	nd 7									
Group 1 (I)	Melting point	Density	Reactivity	Group 7 (VII)	Melting point	Density	Reactivity	Group 0 (VIII)	Melting point	Density	Reactivity
Lithium (Li)	Decreases down the	Increases down the	Increases down the	Fluorine (F)	Increases down the	Increases down the	Decreases down the	Helium (He)	Increases down the	Increases down the	INERT
Sodium (Na)	group	group	group	Chlorine (Cl)	group	group	group	Neon (Ne)	group	group	(DO NOT REACT)
Potassium (K)				Bromine (Br)				Argon (Ar)			
Rubidium (Rb)				lodine (I)				Xenon (Xe)			

10. Transition metals (TRIPLE ONLY)									
Properties compared to group 1 elements	Other useful properties								
More dense	lons can have different charges								
Harder	Form coloured compounds								
Stronger	Good catalysts								
Higher melting points									
Less reactive									

1	11. Common separation techniques
I	1. Chromatography Used to separate a mixture of dyes in ink.
Ī	2. Filtration Used to separate insoluble solids from liquids (e.g. sand from water).
Ī	3. Evaporation Used to separate a soluble salt from solution. The solution is heated strongly in an evaporating basin until dry crystals are left.
	4. Crystallisation Used to separate a soluble salt from solution. The solution is heated gently in an evaporating basin until crystals form; the remaining liquid is filtered out.
	5. Simple distillation Is used to separate a liquid from a solution – e.g. water from ink. A condenser is used to cool hot gas until it forms a liquid.
ľ	6. Fractional distillation Used to separate a mixture of liquids with different boiling points.