Physics Topic 3: Particle model

1. Density		2. Changes of state
p =	maning Unit	Temperature (C) 140 120 100 80 60 60 - 0 - 20 - 50lid Solid and liquid Liquid
V VOL	ume m ³	A. Evaporation/ Vapo B. Condensation C. Melting/ Fusion D. Freezing E. Increasing internal
Arrangement of particles	Randomly arranged Far apart	
Movement of particles	Brownian motion	88888 S
Energy of particles	Very high energy	
Density of substance	Very low density	Solid

Energy transferred, ΔE	= m	iass, m irams kal	X	Specific heat x capacity, c	Temperature change, Δθ
(joules, J)	(KIIO E			(joule per kilogram per degree Celsius, J/kg°C)	(degree Celsius °C)

4. The specific latent heat

Energy transferred, $\Delta E =$

(joules, J)

mass, m x (kilograms, kg)

Latent heat, L (joule per kilogram J/kg)

To find the specific latent heat of a substance the equation can be rearranged to:

 $L= \frac{\Delta E}{m}$