Physics topic 5a: Forces

1. Forces keywords		2. Types of	force				
Force	Something that makes a change happen	Force		Between		itact or non- contact	Example
Magnitude	The size of a measurement	Friction	Two	Two moving surfaces		act	Brakes
Scalar	Things that have magnitude but not direct	Upthrust	An o	An object and water		act	Boat
Vector	Things that have a magnitude and a direction. Forces are always vectors	Reaction Two stationary ob		stationary obje	ects Cont	act	Book on shelf
Contact force	Can only act when two things touch	Air resistan		A moving object and		act	Plane
Non-contact force	Can act on things not touching	air Gravity Two masses		masses	Non-o	contact	You and the earth
Balanced (forces)	When forces are equal and opposite each other also called equilibrium	Tension			stic Cont	act	Spring
Unbalanced (forces)	When opposing forces are not equal to each other	material		erial			
Resultant (force)	The overall force once all the forces are considered	Magnetic		Magnets and magnetic materials		contact	Magnet picking up a nail
Force arrows	Show direction and size of a force	Electrostat	tic 2 ch	arged particle	s Non-o	contact	Proton attracting an electron
Newton	The unit of force	3. Calculat	ting weight				
Newton meter	A spring calibrated so it has a scale to measure force	Symbol	Name	Calcu	lated by		
Centre of mass	A point in the middle of an object where all its mass acts	W	Weight (N	I) = Mass ×	Gravity		W
Elastic	A material that returns to its original shape after being deformed	m	Mass (kg)	avitation = Weight ÷ m field		$m \times g$	
Plastic	A material that does NOT return to its original shape after being deformed	g	Gravitation al field strength				
Equilibrium	Forces in a system are balanced.	On Earth g = 10 N/kg				1	

4. Calculating work			6. Energy s	6. Energy stored in a spring			
Symbol	Name	Calculated by	Symbol	Name	Calculated by		
W	Work (J)	= Force x Distance					
F	Force (N)	= Work ÷ Distance	Ep	Elastic potential energy	$Ep = \frac{1}{2}ke^2$		
S	Distance (m)	= Work ÷ Force					
	$W = F_s$	1	stored (J)	_			
5. Hooke's law			$\frac{1}{2}$	Half (0.5)	N/A		
Symbol	Name	Calculated by	k	Spring constant (N/m)	$k = \frac{2 Ep}{e^2}$		
F	Force (N)	= Spring constant x Extension					
k	Spring constant (N/m)	= Force ÷ Extension					
e	Extension (m)	= Force ÷ Spring constant	е	Extension			
	F = ke		(m)	$e = \sqrt{\frac{2 E p}{k}}$			
E extension (m)			$Ep = \frac{1}{2} ke^2$ To calculate extension: 1. Measure the original length of the object 2. Measure the stretched length of the object 3. Extension = stretched length – original length				