Physics topic 5a: Forces

1. Forces keywords		2. Types of	force)				
Force	Something that makes a change happen	Force		Be	etween	Con	tact or non- contact	Example
Magnitude	The size of a measurement	Friction		Two mov	ing surfaces	Conto	act	Brakes
Scalar	Things that have magnitude but not direct	Upthrust		An objec	t and water	Conto	act	Boat
Vector	Things that have a magnitude and a direction. Forces are always vectors	Reaction		Two statio	onary objects	Conto	act	Book on shelf
Contact force	Can only act when two things touch	Air resistance A moving air Gravity Two mass		A moving object and		Contact		Plane
Non-contact force	Can act on things not touching			ses	Non-a	contact	You and the earth	
Balanced (forces)	When forces are equal and opposite each other also called equilibrium	Tension		Two ends	of an elastic	Conto	act	Spring
Unbalanced (forces)	When opposing forces are not equal to each other	m		material				
Resultant (force)	The overall force once all the forces are	Magnetic		Magnets magnetic	Magnets and No magnetic materials 2 charged particles No		contact	Magnet picking up a nail
Force arrows	Show direction and size of a force	Electrostat	ectrostatic 2 charge				contact	Proton attracting an electron
Newton	The unit of force	3. Calculat	ting w	veight				~
Newton meter	A spring calibrated so it has a scale to measure force	Symbol		Name	Calculated	by		
Centre of mass	A point in the middle of an object where all its mass acts	W	Wei	ight (N)	= Mass x Grav	vity		
Elastic	A material that returns to its original shape after being deformed	m	Ma	ss (kg)	= Weight ÷ G	ravity		m×g
Plastic	A material that does NOT return to its original shape after being deformed	g	g Gravitation al field strength		= Weight ÷ mass			
Equilibrium	Forces in a system are balanced.	On Earth g = 10 N/kg						

4. Calculating work				
Symbol	Name	Calculated by		
W	Work (J)	= Force x Distance		
F	Force (N)	= Work ÷ Distance		
S	Distance (m)	= Work ÷ Force		
W = Fs				

5. Hooke's law				
Symbol	Name	Calculated by		
F	Force (N)	= Spring constant x Extension		
k	Spring constant (N/m)	= Force ÷ Extension		
e	Extension (m)	= Force ÷ Spring constant		
F = ke				

6. Energy stored in a spring				
Symbol	Name	Calculated by		
Ep	Elastic potential energy stored (J)	$Ep = \frac{1}{2}ke^2$		
$\frac{1}{2}$	Half (0.5)	N/A		
ĸ	Spring constant (N/m)	$k = \frac{2 Ep}{e^2}$		
Ð	Extension (m)	$e = \sqrt{\frac{2 \ Ep}{k}}$		
$Ep = \frac{1}{2}ke^2$				
 To calculate extension: Measure the original length of the object Measure the stretched length of the object Extension = stretched length – original length 				

7. Moments:

1.To calculate a moment you need to know:

- How much force is being applied (Newtons, N)
- The distance from the pivot that the force is being applied (Meters, m)

Moment = force x distance

2.The unit for moment is newton metre (Nm)

3.A small force over a large distance can generate the same moment as a large force over a small distance.

8. Calculating pressure				
Symbol	Name	Calculated by		
F	Force (N)	= pressure x area		
p	Pressure (Pa = n/m²)	= force ÷ area		
A	Area (m²)	= force ÷ pressure		

9. Calculating pressure in column of liquid (HT ONLY)				
Symbol	Name	Calculated by		
g	Gravitational field strength (10 N/Kg)	$g = \frac{p}{h\rho}$		
р	Pressure (Pa = N/m²)	p = h ho g		
h	Height (m)	$h = \frac{p}{g\rho}$		
ρ	Density (kg/m³)	$ \rho = \frac{p}{gh} $		
$p = h \rho g$				