Physics Topic 5b: Forces in motion

1. Keywords	
Speed	Distance \div time. Scalar quantity
Velocity	Distance (in a certain direction) \div time. Vector quantity
Distance	How far and object moves. Scalar quantity
Displacement	The straight line distance from the start point to the end point. Vector quantity
Terminal velocity	The maximum speed reached when the forces are balanced

2. Typical speeds	
Walking	$1.5 \mathrm{~m} / \mathrm{s}$
Running	$3 \mathrm{~m} / \mathrm{s}$
Cycling	$6 \mathrm{~m} / \mathrm{s}$
Sound	$330 \mathrm{~m} / \mathrm{s}$

Iculating		
Symbol	Name	Calculated by..
s	Distance (m)	= speed x time
\checkmark	Speed/Velocity (m / s)	$=$ distance \div time
\dagger	Time (s)	$=$ distance \div speed
$s=\mathrm{v} \dagger$		

4. D/T graph keywords

Keyword	Meaning	Position on distance time graph
Accelerate	Speeding up	1
Decelerate	Slowing down	2
Constant speed	Staying the same speed	3
Stationary	Not moving	4
Speed	Distance covered in a certain time	The steepness of the line

5. Acceleration	Acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	$a=\frac{\Delta v}{t}$
a	Change in velocity $(\mathrm{m} / \mathrm{s})$	$\Delta v=a t$
Δv	Time (s)	$t=\frac{\Delta v}{a}$
t	$a=\frac{\Delta v}{t}$	

7. Uniform acceleration	
v	$v^{2}-u^{2}=2 a s$
u	Final velocity $(\mathrm{m} / \mathrm{s})$
a	Acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
s	Distance (m)

6. Velocity-time graphs

1	Constant acceleration
2	Constant speed/velocity
3	Constant deceleration
HT	Area under graph = total distance travelled

8. Newtons laws of motion

$1^{\text {st }}$	If the resultant force on an object is zero the object either remains stationary or at a constant speed
$2^{\text {nd }}$	Force = mass x acceleration
$3^{\text {rd }}$	When two objects interact the forces are equal and opposite

9. Forces and braking

Stopping distance	The thinking distance + braking distance
Thinking distance	The distance travelled in the time it takes to react (typically 0.2-0.9s)
Factors affecting thinking distance	1. Tiredness 2. Drugs 3. Alcohol 4. Distractions (phones)
Braking distance	The distance travelled under a braking force
Factors affecting	
braking distance	1. Road conditions (ice, water) 2. Tyre condition 3. Brake condition

10. Momentum (HT ONLY)

p	Momentum $(\mathrm{kgm} / \mathrm{s})$	$p=\mathrm{mv}$
m	Mass (kg)	$\mathrm{m}=\mathrm{p} \div \mathrm{v}$
v	Velocity (m / s)	$\mathrm{v}=\mathrm{p} \div \mathrm{m}$
Conservation of momentum	The total momentum before $=$ the total momentum after	

