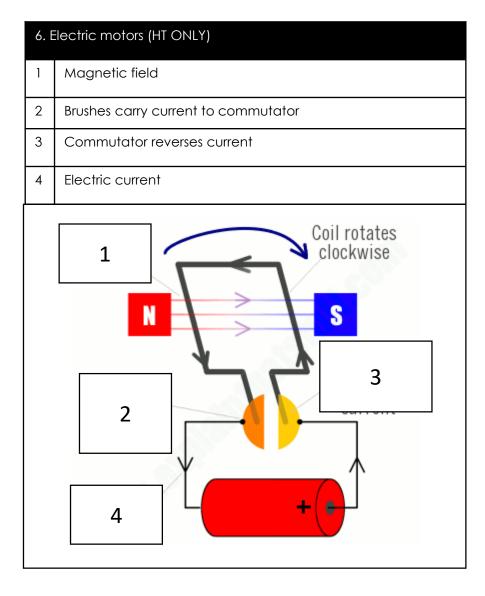

Physics topic 7 Magnetism and electromagnetism


1. Keywords		
Permanent magnet	A material which is always magnetic	
poles	the place where the magnetic force is strongest north and south (many field lines)	
Magnetic field lines	The lines that show the direction of magnetic force. The closer the stronger the force is. Arrows go from north to south poles	
Induced magnet	A material that becomes a magnet when placed in a magnetic field	
Magnetic material	A material that can be attracted to a magnet (iron, steel, cobalt and nickel)	
Electromagnet	A magnet which works when an electric current flows. A solenoid with an iron core	
Solenoid	A coil of wire that can become an electromagnet	
Compass	Shows the direction of a magnetic field. Used to plot a magnetic field	
Current	The rate of flow of charge	
Magnetic flux density (B)	The strength of the magnet lines per m² (measured in T (tesla))	

4. Fleming's left-hand rule (HT ONLY)				
Which finger		What it means		
1	Thumb	(F) Movement/Force		
2	2 First finger (B) Field (north to sout			
3	Second finger	(I) Current (+ to -)		
1 2 3				

5. Factors that affect the size of the force on the conductor (HT ONLY) F = BII $F \qquad \qquad \text{Force (N)}$ $B \qquad \qquad \text{Magnetic flux density (Tesla, T)}$ $I \qquad \qquad \text{Current (A)}$ Length (m)

7. The generator effect (PHYSICS HT ONLY)		
1	Force moves wire	
2	Wire cuts magnetic field	
3	Current is induced in wire	
	2 N 3	

9. Using the generator effect (PHYSICS HT ONLY)			
Alternator	Generates alternating current		
Dynamo	Generates direct current		
Microphones	Convert pressure variations in sound into electric current		

8. Factors that affect the size and direction of induced current/potential difference (PHYSICS HT ONLY)					
Magnetic pole	Pushed in or pulled out	Direction of current	Induced polarity of A	Magnet and coil	
North	In	Anticlockwise	North	Repel	
North	Out	Clockwise	South	Attract	
South	In	Anticlockwise	South	Repel	
South	Out	Clockwise	North	Attract	
S N B S					

10. Tra	Work out voltage	
Vp	Potential difference across primary coil (Volts)	change:
np	Number of turns in primary coil	$\frac{v_p}{v_p} = \frac{n_p}{n_p}$
lp	Current in primary coil (Amps)	V_s n_s
Vs	Potential difference across secondary coil (Volts)	Work out power output:
ns	Number of turns in secondary coil	\\ \ \ \ - \\ \ \ \ \ \ \ \ \ \ \ \ \ \
Is	Current in secondary coil (Amps)	$v_p l_p - v_s l_s$