Stage 5 Knowledge Organiser (Corbett Maths video numbers in brackets)

1. Multiply and divide large numbers (199, 200, 98)
2. Negatives in a temperature context (209)
3. Give the first 5 multiples of a number (220)
4. List the factors of a number using multiplication facts (216)
5. List the first 10 prime numbers (225)
6. List the first 10 square numbers (226)
7. Use common denominators to compare fractions (135 \& 144)
8. Convert decimals to fractions using column headings (123)
9. Convert percentages to fractions (122)
10. Convert fractions to percentages (factors of 100 denominators) (126)
11. Reflect a shape in a horizontal or vertical line (272)
12. Find perimeter and area of rectilinear shapes on a grid $(242,43)$
13. Find volume by counting cubes
14. Know definitions of angle types (38)
15. Know metric length conversions (349a)
16. Construct an accurate bar chart (147)
17. Read and use 24 hour time (322)
18. Use straight line and around a point angle rules $(35,30)$
19. Identify and sketch the net of a cube (4)
20. Read a timetable (320)

Step 2 - Multiply each digit of the top number by the digit in the ones column of the bottom number (the 2 in this case). Write your answers underneath, carrying across to the next column if your answer goes over 10.

Do this until you have multiplied each digit on the top row
by the ones digit of the bottom number.
Step 3 - You are now going to move onto multiplying by the tens column of the bottom number (the 3), so to represent that you're now multiplying by tens put a zero in the ones column on the next line.

756

Step 4 - Multiply each digit in the top row by the digit in the tens column of the bottom row (the 3 in this case)

Division Example: Divide 518 by 4
Step 1 - Put the number you are dividing by (the divisor) outside the bus stop and the number being divided (the dividend) inside the bus stop
$518 \div 4$

Step 2 - Divide the first digit of the dividend by your divisor (how many times does 4 go into 5?) Write your answer on top of the first digit and write any remainders in the next column as an added digit.

$5 \div 4=1 r .1$

Step 3 - Divide the remainder and second digit of the dividend (how many times does the 4 go into 11 ?) Write your answer above the second digit of the dividend and write any remainders as an added digit in the next column.

$11 \div 4=2$ r. 3
Step 4 - Repeat this process until you've reached the end of your dividend.

$38 \div 4=9 r .2$

502	Negatives Example: If the temperature is $-3^{\circ} \mathrm{C}$ and rises $12^{\circ} \mathrm{C}$ what is the new temperature? Use the number line above to picture questions like this. If you are increasing you move to the right, if you are decreasing you move to the left. So start at -3 and go up (to the right) 12 times. Where do you end up? You should get $9^{\circ} \mathrm{C}$	Negative numbers are numbers below zero.
503	Give the first 5 multiples of a number Example: Give the first 5 multiples of 6 Multiples of 6 are the numbers in the 6 times table. So, the first 5 multiples of 6 are: $6,12,18,24$ and 30 .	Multiples of a number are found by multiplying the number by another whole number.
504	Listing Factors Factors of a number can divide equally into that number. The best way to find all the factors of a number is to find factor pairs: times table multiplication facts that give the number. Example: List all the factors of 24 $\begin{aligned} & 1 \times 24 \\ & 2 \times 12 \\ & 3 \times 8 \end{aligned}$ 4×6. So, the factors of 24 are $1,2,3,4,6,8,12$ and 24	Factors of a number can divide equally into that number
505	List the first 10 Prime Numbers Learn these like another times table: $2,3,5,7,11,13,17,19,23,29$ Notice: 1 is NOT a prime number as it only has 1 factor, not 2 !	Prime numbers are number with only two factors; themselves and 1
506	List the first 10 Square numbers Learn these like another times table:	Squaring a number means multiplying it by itself
507	Use common denominators to compare fractions Example: which is bigger $\frac{3}{5}$ or $\frac{4}{7}$? The denominators here are 5 and 7 . Multiply the $\frac{3}{5}$ by $\frac{7}{7}$ and the $\frac{4}{7}$ by $\frac{5}{5}$ (this is also known as cross multiplying, you are generating equivalent fractions here).	Denominatornumber on the bottom of a fraction Numerator- number of top of a fraction

Acute angles - these lie between 0 and 90 degrees
sharp or piercing; or clever and insightful. If two lines meet at a right angle they are called perpendicular lines.
In English the word obtuse actually means 'slow witted' or 'stupid'.

515	Know the Metric Length Conversions Learn these: $\begin{aligned} & 10 \mathrm{~mm}=1 \mathrm{~cm} \\ & 100 \mathrm{~cm}=1 \mathrm{~m} \\ & 1000 \mathrm{~m}=1 \mathrm{~km} \end{aligned}$	Metric systems are nased around groups of 10, 100, 1000 etc Metric units are ones that you can put kilo or milli in front of.
516	Construct an Accurate Bar Chart Bar charts are easy to draw, but they are also easy to not draw accurately. Things to remember: - Label your axis (frequency up the side) - Bars need to be the same width - Leave an equal space between bars (other subjects may tell you this doesn't matter but it does!) - Title - Make sure the numbers up the side are equally spaced as well Example: Draw an accurate bar chart from the frequency table below showing the shoe size of students in year 6.	

	Write 21:40 in am/pm time the hours here are 21, so take 12 away from that and its 9:40pm Write 10:12pm in 24 hour time This time we need to add 12 hours on, so we get 22:12	
518	Use Straight Line and Around a Point Angle Rules Angles meeting on a straight line always add up to 180° Angles meeting at a point always add up to 360° Examples: Find the missing angle x The two angles, x and 84 meet on a straight line. So, doing $180^{\circ}-84^{\circ}=96^{\circ}$ So, $x=96^{\circ}$ The three angles ($x, 210^{\circ}$ and 57°) all meet at a point. So, doing $360^{\circ}-210^{\circ}-57^{\circ}=93^{\circ}$ So, $x=92^{\circ}$	
519	Identify and Sketch the Net of a Cube A net is a shape that will fold up to make a complete 3D shape without any overlapping. A cube has 6 faces that are all squares so the net of a cube must be made up of 6 squares. You will need to imagine folding the shape up and see if it makes a full cube. Sketching: The easiest net to remember is the one that looks like a cross, but there are others.	
520	Read a Timetable The thing to remember with a timetable is that it reads down. If you read it across it just shows the same stop happening every hour or so, that wouldn't get anyone anywhere!!	

Southville	0920	1030	1210
Leek	0948	1058	1238
Milton	0955	1105	1245
Newtown	1010	1120	1300
Red Island	1019	1129	1309
Sandville	1045	1155	1335
Bakerstown	1101	1211	1351

The above timetable shows 3 different trains, all starting from Southville and Ending in Bakerstown.
Example: I arrive at the Milton station at 1100 and want to get to Sandville. What is the earliest time I can get to Sandville?

If we arrive at Milton at 1100 the next train at that point is the 1105

Southville	0920	1030	1210
Leek	0948	1058	1238
Milton	0955	1105	1245
Newtown	1010	1120	1300
Red Island	1019	1129	1309
Sandville	1045	1155	1335
Bakerstown	1101	1211	1351

If we get this train, we can see we will arrive at Sandville at 1155

Southville	0920	1030	1210
Leek	0948	1058	1238
Milton	0955	1105	1245
Newtown	1010	1140	1300
Red Island	1019	1129	1309
Sandville	$10-45$	1155	1335
Bakerstown	1101	1211	1351

