Stage 6 Knowledge Organiser (Corbett Maths video numbers in brackets)

- 1. Identify common factors of two or more numbers (219)
- 2. Identify common multiples of two or more numbers (218)
- 3. Fully simplify a given fraction (146)
- 4. Adding and subtracting fractions with different denominators (133)
- 5. Solve one step algebraic equations (110)
- 6. Find a fraction of an amount (137)
- 7. Find a percentage of an amount (234, 235)
- 8. Find the missing term in a sequence (287)
- 9. Calculate the area of rectangles, triangles and parallelograms (45, 44, 49)
- 10. Calculate the volume of cubes and cuboids (355)
- 11. Solve a recipe problem (256)
- 12. Draw an enlargement (no centre) (104)
- 13. Use a two-step formula
- 14. Use a protractor to draw and measure angles (<180) (28, 31)
- 15. Angles in triangles and quadrilaterals (33, 37)
- 16. Construct a pie chart (163)
- 17. Round to powers of 10 (277a, 277b)
- 18. Calculate the mean of a list of numbers (53)
- 19. Plot coordinates in all 4 quadrants (84)
- 20. Translate a shape by a worded vector (325)

| Skill | Method                                                                                                                                                                 | Keywords/Definitions |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| 601   | l Identifying Common Factors                                                                                                                                           |                      |  |
|       | List the factors of both number and find any factors that appear in both lists                                                                                         | can divide equally   |  |
|       | Example: Find the common factors of 12 and 20                                                                                                                          | into that number.    |  |
|       | Factors of 12 Factors of 20                                                                                                                                            | Common factors are   |  |
|       | 1x12 1x20                                                                                                                                                              | factors of one or    |  |
|       | <mark>2</mark> x6 2x10                                                                                                                                                 | more numbers.        |  |
|       | 3x <mark>4</mark>                                                                                                                                                      |                      |  |
|       | So, the common factors of 12 and 20 are 1, 2 and 4                                                                                                                     |                      |  |
| 602   | Identifying Common Multiples                                                                                                                                           | Multiples of a       |  |
|       | List the multiples of each number and find ones that appear in both lists                                                                                              | number are found by  |  |
|       | Example: Find a common multiple of 6 and 9                                                                                                                             | multiplying that     |  |
|       | Multiples of 6 include: 6, 12, <mark>18</mark> , 24, 30                                                                                                                | number by a whole    |  |
|       | Multiples of 9 include: 9, <mark>18</mark> , 27, 36, 45                                                                                                                | number (their times  |  |
|       | So, 18 is a common multiple of both 6 and 9                                                                                                                            | tables)              |  |
| 603   | Fully Simplify a Given Fraction                                                                                                                                        | Equivalent fraction: |  |
|       | Divide both the numerator and denominator by the same thing until you cannot find any more numbers that both can be                                                    | where the same       |  |
|       | divided by.                                                                                                                                                            | fraction can be show |  |
|       | Example: Simplify $\frac{36}{42}$                                                                                                                                      | using different      |  |
|       | $\frac{42}{12}$ is a factor of both 26 and 42 so we can divide both numbers by 2 which gives us $\frac{18}{12}$                                                        | numbers than the     |  |
|       | 2 is a factor of both 50 and 42 so we can divide both numbers by 2 which gives us $21$                                                                                 | ones given           |  |
|       | 3 is a factor of both 18 and 21 so we can divide both numbers by 3 which gives $\frac{3}{7}$                                                                           |                      |  |
|       | There are no more common factors so $\frac{6}{7}$ is simplified fully.                                                                                                 |                      |  |
| 604   | Adding, Subtracting, Multiplying and Dividing Fractions                                                                                                                | Numerator- top       |  |
|       | For adding and subtracting use equivalent fractions to get both fractions to have the same denominator then add/subtract                                               | number               |  |
|       | numerators.                                                                                                                                                            | Denominator-bottom   |  |
|       | Example: Calculate $\frac{6}{7} - \frac{3}{5}$                                                                                                                         | number               |  |
|       | Multiply the $\frac{6}{7}$ by $\frac{5}{5}$ and the $\frac{3}{5}$ by $\frac{7}{7}$ which gives $\frac{30}{35} - \frac{21}{35}$ (this is known as cross multiplication) | Equivalent fraction- |  |
|       | Now the denominators are equal we can subtract numerators to give $\frac{9}{2}$                                                                                        | written with         |  |
|       | 35                                                                                                                                                                     | different numbers    |  |
|       | Use the exact same method for an addition, just add the numerators at the end instead of subtracting them.                                                             |                      |  |
|       | For multiplying fractions multiply the numerators together and multiply the denominators together.                                                                     |                      |  |
|       | Example: Calculate $\frac{2}{3} \times \frac{3}{2} = \frac{6}{3}$ which simplifies to $\frac{3}{3}$                                                                    |                      |  |
|       | $\frac{1}{7}$                                                                                                                                                          |                      |  |

|     | For dividing fractions flip the second fraction only upside down and multiply this fraction by the first fraction.                          |                       |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|
|     | Example: Calculate $\frac{3}{4} \div \frac{5}{6}$ turn the second fraction upside down and multiply the three quarters by this new fraction |                       |  |  |  |
|     |                                                                                                                                             |                       |  |  |  |
|     | $\frac{3}{4} \times \frac{6}{5} = \frac{16}{20}$ then this simplifies to $\frac{9}{10}$                                                     |                       |  |  |  |
|     |                                                                                                                                             |                       |  |  |  |
| 605 | Solve one step algebraic equations                                                                                                          | Equations have        |  |  |  |
|     | must do to the other to keep it balanced                                                                                                    | an equals sign        |  |  |  |
|     | Example: solve                                                                                                                              | Inverse means         |  |  |  |
|     | x - 7 = 12 Get rid of the -7 here by using the inverse operation: +7 on both sides                                                          | opposite: so add and  |  |  |  |
|     | +7 +7 this 'deletes' the -7 on the left hand side but adds 7 onto the 12 on the right hand side                                             | subtract are inverse  |  |  |  |
|     | x = 12                                                                                                                                      | and multiply and      |  |  |  |
|     | Remember that terms like 5x mean '5 multiplied by x', and. $\frac{2}{6}$ means 'x divided by 6'                                             | divide are inverse.   |  |  |  |
| 606 | >6   Find a Fraction of an Amount:                                                                                                          |                       |  |  |  |
|     | Draw a diagram to represent the fraction you want to find. Use the amount given to find what's in each block, then count up                 |                       |  |  |  |
|     | the blocks you have shaded.                                                                                                                 |                       |  |  |  |
|     | Example: Find $\frac{3}{7}$ of £210                                                                                                         |                       |  |  |  |
|     |                                                                                                                                             |                       |  |  |  |
|     | this diagram represents the $\frac{1}{7}$ as 3 out of the 7 blocks are shaded.                                                              |                       |  |  |  |
|     | £210                                                                                                                                        |                       |  |  |  |
|     |                                                                                                                                             |                       |  |  |  |
|     | so if the whole diagram represents the £210, we can divide the £210 into the 7 blocks                                                       |                       |  |  |  |
|     |                                                                                                                                             |                       |  |  |  |
|     | £30 £30 £30 £30 £30 £30 £30                                                                                                                 |                       |  |  |  |
|     | and count up the blocks we shaded: £30 + £30 + £30 = £90                                                                                    |                       |  |  |  |
|     | So, <sup>3</sup> / <sub>7</sub> of £210 is £90                                                                                              |                       |  |  |  |
| 607 | Finding a Percentage of an Amount:                                                                                                          | Percent means 'out    |  |  |  |
|     | Find 10% (and 5% if needed) then use these to find the percentage you want.                                                                 | ot 100'               |  |  |  |
|     | Example: Find 35% of 80g                                                                                                                    | To find 10% divide by |  |  |  |
|     |                                                                                                                                             | 10                    |  |  |  |
|     | ag a                                                                                                    |                       |  |  |  |

|     | 10%=8g                                                                                                            |                                                    |
|-----|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|     | 10%=8g                                                                                                            |                                                    |
|     | 10%=8g                                                                                                            |                                                    |
|     | +5% = 4g                                                                                                          |                                                    |
|     | 35%=28g                                                                                                           |                                                    |
|     | So 35% of 80g = 28g                                                                                               |                                                    |
| 608 | Finding a missing term in a sequence                                                                              | A sequence is a                                    |
|     | Decide what the rule is for the sequence then use this to find the missing term.                                  | pattern of numbers                                 |
|     | Example: Find the next term in the following sequence 3 8 13 18 23                                                | following a rule                                   |
|     | The rule here must be +5 so the next term is 23 + 5 = 28                                                          |                                                    |
| 609 | Finding the area of rectangles, parallelograms and triangles.                                                     | Height must be                                     |
|     | For a rectangle and parallelogram area = length x width                                                           | straight up in shapes,                             |
|     | 12cm                                                                                                              | not slanty!                                        |
|     | 5cm 76cm                                                                                                          | Units for area should                              |
|     |                                                                                                                   | always be squared                                  |
|     | Area = $12$ cm x 2 cm = $24$ cm <sup>2</sup> 9 cm Area = 9 cm x 5 cm = $45$ cm <sup>2</sup> Note that the 6 cm is | m <sup>2</sup> cm <sup>2</sup> mm <sup>2</sup> etc |
|     | NOT the neight                                                                                                    |                                                    |
|     | For a triangle area = base x height ÷ 2 (a triangle is effectively a rectangle cut in hait)                       |                                                    |
|     | 13cm                                                                                                              |                                                    |
|     | 12cm                                                                                                              |                                                    |
|     |                                                                                                                   |                                                    |
|     | 5cm Area = 5cm x 12cm $\div$ 2 = 30cm <sup>2</sup> again note that the 12cm is the height here, NOT the 13cm      |                                                    |
| 610 | Finding the volume of cubes and cuboids                                                                           | Length, width and                                  |
|     |                                                                                                                   | height can be                                      |
|     |                                                                                                                   | replaced with                                      |
|     |                                                                                                                   | different names for                                |
|     |                                                                                                                   | example base.                                      |
|     | Multiply the length, width and height together (these will all be the same for a cube)                            | height, depth etc                                  |
|     | Example: Find the volume of the following cuboid                                                                  | Units here should all                              |
|     |                                                                                                                   | be cubed to show it                                |
|     |                                                                                                                   | is a 3D space $cm^3 m^3$                           |
|     |                                                                                                                   |                                                    |
|     |                                                                                                                   |                                                    |

|     | 25cm<br>20cm<br>4cm Volume :                                                                                                                                                                                             | = 4cm x 20cm x 25cr                             | n = 2 000cm <sup>3</sup>                  |                                                       |                      |                                         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|-------------------------------------------------------|----------------------|-----------------------------------------|
| 611 | Solve a Recipe Problem                                                                                                                                                                                                   |                                                 |                                           |                                                       |                      |                                         |
|     | Recipes work using direct prop<br>Example: Below are the measu<br>scones?<br>8 Scones                                                                                                                                    | oortion (if one thing o<br>arements to make 8 : | doubles, everything<br>scones. How much o | else needs to double etc)<br>of each ingredient would | pe needed to make 20 |                                         |
|     | 200g flour                                                                                                                                                                                                               |                                                 |                                           |                                                       |                      |                                         |
|     | 30g caster sugar                                                                                                                                                                                                         |                                                 |                                           |                                                       |                      |                                         |
|     | 50g butter                                                                                                                                                                                                               |                                                 |                                           |                                                       |                      |                                         |
|     | 140ml milk                                                                                                                                                                                                               |                                                 |                                           |                                                       |                      |                                         |
|     | 1 egg                                                                                                                                                                                                                    |                                                 |                                           |                                                       |                      |                                         |
|     | IF we double everything here we get 16 scones, if we treble (x3) we get 24, so we cant just do that but 16+4=20 so find the measurements for 16 and the measurements for 4 and add these to get the measurements for 20. |                                                 |                                           |                                                       |                      |                                         |
|     | 200g flour                                                                                                                                                                                                               | 400                                             | 100                                       | 500                                                   |                      |                                         |
|     | 30g caster sugar                                                                                                                                                                                                         | 60                                              | 15                                        | 75                                                    |                      |                                         |
|     | 50g butter                                                                                                                                                                                                               | 001                                             | 25                                        | 125                                                   |                      |                                         |
|     | 140ml milk                                                                                                                                                                                                               | 2.80                                            | 70                                        | 35()                                                  |                      |                                         |
|     | 1 egg                                                                                                                                                                                                                    | 2                                               | 1/2                                       | 2 <sup>1</sup> 2                                      |                      |                                         |
| 612 | Draw an Enlargement                                                                                                                                                                                                      |                                                 | and anoth of the new                      | onlarged sides of the sh                              | ana naada ta ba      | Scale factor – what<br>each side length |
|     | Us the scale factor of enlargen                                                                                                                                                                                          |                                                 | bog each of the new                       | , emarged sides of the sh                             | ape neeus to be.     |                                         |



|     | As this gives us the top point on the triangle we can join it up to the base to complete the enlargement.                             |                       |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| 613 | Use a Two Step Worded Formula                                                                                                         | A Formula is a set of |  |
|     | A formula is a set of instructions to do to an 'input' number that will give you a corresponding 'output' number.                     | instructions to get   |  |
|     | A two-step formula has two operations to do to the input to find the output.                                                          | from an input to an   |  |
|     |                                                                                                                                       | output.               |  |
|     | Example: To convert between degrees Celcius and degrees Farneheit you can use the basic formula:                                      | They can also be      |  |
|     |                                                                                                                                       | algebraic, and you    |  |
|     | Temperature in Farenheit = Temperature in Degrees $\times 2 + 32$                                                                     | know some formulae    |  |
|     | Calculate the Farenheit temperature when it is 21º Celcius                                                                            | Aroa-Longth y Width   |  |
|     | If we know that the 'temperature in degrees' is 24 then we can put that into our formula:                                             | Area-Length X With    |  |
|     | Tamperature in Egres is 24 then we can put that into our formula.<br>Tamperature in Egrephait $-24 \times 2 + 22$                     | Degrees Celcius allu  |  |
|     | $1 \text{ emperature in Further in emettic - 24 \times 2 + 32$ Using BIDMAS to calculate this gives us $18 + 32 - 80^{\circ}\text{F}$ | are two moasures of   |  |
|     | USING BIDIVIAS LO CALCUIALE LINS GIVES US 48 + 32 = 80°F                                                                              |                       |  |
|     | We can also be given the 'output' and asked to find the 'input'                                                                       |                       |  |
|     | Example: Using the same temperature formula above, if the temperature is given as 92° Earopheit, what is the temperature              |                       |  |
|     | in degrees celcius?                                                                                                                   |                       |  |
|     | This time replace the 'temperature in Farenheit' with 92 to give                                                                      |                       |  |
|     | $92 = Temperature in Dearees \times 2 + 32$                                                                                           |                       |  |
|     | So we now need to solve this using inverse operations. So we subtract 32 and then divide by two (remember to do the                   |                       |  |
|     | opposite order to BIDMAS when using inverse operations)                                                                               |                       |  |
|     | $92 - 32 = 60 \div 2 = 30^{\circ}C$                                                                                                   |                       |  |
|     |                                                                                                                                       |                       |  |



|     | 75 + 80 = 155                                                                                              | $70 + 50 + 90 = 210$ remember the little box means $90^{\circ}$                                 |  |  |
|-----|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|
|     | So to find the missing one, subtra                                                                         | act this from the total we know from the rule                                                   |  |  |
|     | 180 - 155 = 25                                                                                             | 360 - 210 = 150                                                                                 |  |  |
| 516 | Construct a Pie Chart                                                                                      |                                                                                                 |  |  |
|     | Example: construct a pie chart fr                                                                          | om the frequency table below                                                                    |  |  |
|     | Colour Frequency                                                                                           |                                                                                                 |  |  |
|     | Blue 25                                                                                                    |                                                                                                 |  |  |
|     | Green 14                                                                                                   |                                                                                                 |  |  |
|     | Red 21                                                                                                     |                                                                                                 |  |  |
|     | Add up your frequencies to find                                                                            | he total                                                                                        |  |  |
|     | 25 + 14 + 21 = 60                                                                                          |                                                                                                 |  |  |
|     | What we now need to decide is w                                                                            | vhat number links our total frequency (60) to the total for the degrees in a pie chart (this is |  |  |
|     | ALWAYS 360 as a pie chart is alw                                                                           | ays in the shape of a circle)                                                                   |  |  |
|     | So we divide $360 \div 60 = 6$                                                                             | and to draw for each colour we must multiply the frequency by 6 each time                       |  |  |
|     | This means to find the angle we need to draw for each colour we must multiply the frequency by 6 each time |                                                                                                 |  |  |
|     | Colour Frequency                                                                                           |                                                                                                 |  |  |
|     | Blue 25                                                                                                    |                                                                                                 |  |  |
|     | Breen 14                                                                                                   |                                                                                                 |  |  |
|     | Red 21                                                                                                     |                                                                                                 |  |  |
|     | each one so you don't overlap th                                                                           | e sections                                                                                      |  |  |
|     |                                                                                                            | 150     120 '50       84     84                                                                 |  |  |

| 617 | Round to the Nearest 10, 100 and 1000                                                                                          |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     | Rounding a number means giving it as the closest 10, 100 or 1000. To decide which one it is closest to, decide the two it lies |  |  |  |
|     | in between then use the rule "5 or more go up, otherwise go down"                                                              |  |  |  |
|     |                                                                                                                                |  |  |  |
|     | Examples:                                                                                                                      |  |  |  |
|     | Round 47 to the nearest 10                                                                                                     |  |  |  |
|     | 47 lies between 40 and 50. As it is over 45 we round up to 50                                                                  |  |  |  |
|     |                                                                                                                                |  |  |  |
|     | Round 729 to the nearest 100.                                                                                                  |  |  |  |
|     | 729 lies between 700 and 800. As we are rounding to the nearest 100, it is the digit in the tens column that we look at to     |  |  |  |
|     | decide whether to go up or down. The tens has a 2 in it this time so we round down to 700                                      |  |  |  |
|     |                                                                                                                                |  |  |  |
|     | Round 12 503 to the nearest 1000                                                                                               |  |  |  |
|     | In terms of 1000, we 503 lies between 12 000 and 13 000. As we are rounding to 1000 it will be the hundreds column that we     |  |  |  |
|     | look at to decide whether to round up or down. This time the hundreds has a 5 in it so we round up to 13 000                   |  |  |  |
| 618 | Calculate the Mean of a List of Numbers                                                                                        |  |  |  |
|     |                                                                                                                                |  |  |  |
|     | The mean is a type of average. An average is a typical or normal value for a group.                                            |  |  |  |
|     | total                                                                                                                          |  |  |  |
|     | $mean = \frac{count}{count}$ Where the total is the numbers added up and the count is how many numbers there are.              |  |  |  |
|     |                                                                                                                                |  |  |  |
|     | Example: Find the mean of the following numbers 13, 6, 10, 6, 4, 8, 17, 9                                                      |  |  |  |
|     |                                                                                                                                |  |  |  |
|     | Total = $13 + 6 + 10 + 6 + 4 + 8 + 17 + 9 = 73$ the count here is 8 as there are 8 numbers                                     |  |  |  |
|     | 73                                                                                                                             |  |  |  |
|     | So, $mean = \frac{73}{8} = 9.125$                                                                                              |  |  |  |
|     |                                                                                                                                |  |  |  |
| 619 | Plot Coordinates in all 4 Quadrants                                                                                            |  |  |  |
|     | A coordinate is made up of two numbers in a bracket, separated by a comma. They show us a specific place on a grid of          |  |  |  |
|     | numbers. The first number lines up with the x axis (going across) and the second numbers lines up on the y axis (going up and  |  |  |  |
|     | down.                                                                                                                          |  |  |  |
|     |                                                                                                                                |  |  |  |
|     | Example: Plot the following coordinate on a grid (-4, 3)                                                                       |  |  |  |

