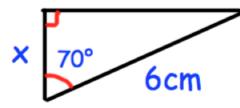

Stage 9 Knowledge Organiser (Corbett Maths video numbers in brackets)

- 1. Calculate the value of an investment using compound interest (236)
- 2. Use Pythagoras theory to find any missing side on a right triangle (257)
- 3. Use SOH CAH TOA to find missing sides and angles on a right triangle (330, 331)
- 4. Expand double brackets (14)
- 5. Factorise double brackets with a coefficient of 1 for x^2 and use to solve a quadratic equation (118, 266)
- 6. Draw and use a tree diagram to find the probability of multiple events (252)
- 7. Find the equation of a straight line given two points (195)
- 8. Solve a pair of linear simultaneous equations (295)
- 9. Identify and understand positive and negative correlation (168)
- 10. Draw a line of best fit and use to estimate values on a scatter graph (167)
- 11. Plot a quadratic graph (264)
- 12. Solve an inequality and express on a number line (177, 178)
- 13. Solve a work done problem (254, 255)
- 14. Use similarity to find missing sides on shapes (292)
- 15. Calculate the volume of a sphere/pyramid/cone (359, 360, 361)
- 16. Identify and continue a Fibonacci sequence (287a)
- 17. Identify and generate/continue a quadratic sequence (388)
- 18. Know the rules for proving congruency (66, 67)
- 19. Add and multiply column vectors (353a)
- 20. Construct angle and line bisectors (72, 78)

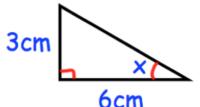
Skill	Method		Keywords/Definitions
901	Calculating the Value of an Investment using Compound Interest		Compound interest is
		where you gain more	
	Find the multiplier to increase by your rate of interest and multiply your original investm	interest each year on	
	the number of years you are investing for.	an investment as the	
		amount in your	
	Example: Calculate the value of a £4000 investment at 1.2% interest for 5 years		account increases
	1.2% interest gives us a multiplier of 1.012 (101.2%) over 5 years means to the power 5		each year.
			Investment is when
	$\pounds4000 \times 1.012^5 = \pounds4245.83$		you put money into
			something.
902	Use Pythagoras to Find Missing Sides on a Right-Angled Triangle		Hypotenuse-longest
			side on a right-
	Pythagoras states: $a^2 + b^2 = c^2$ where c is the hypotenuse (longest side)		angled triangle
	TIP:If you are finding the biggest side you'll be adding, if you're finding a smaller side you	'll be subtracting.	
	Example: Find the missing sides on these triangles		
	8cm		
	× 4cm		
	5cm 6	cm	
	The 8 is the biggest side here, so we are The x is the time of time of the time of time of the time of time of the time of the time of	he biggest side here so we'll be	
	Finding a smaller side so we'll be subtracting: adding:		
	$x^2 + 5^2 = 8^2 $	2	
	$\begin{array}{c} x^2 + 5^2 = 8^2 \\ x^2 + 25 = 64 \\ 16 + 36 \end{array}$		
		-x $=x^2$	
	x = 6.24 cm 6.32 cm		
	Check that the side you think is the biggest on the triangle is still the biggest side?		
L			


903 Use SOH CAH TOA (trigonometry) to Find Missing Sides and Angles on Right-Angled Triangles

Learn these formula triangles:

Label the sides of the triangle Opposite, Adjacent and Hypotenuse then whichever are the important sides (ones given and that you're working out) will direct you to one of the above triangles. Fill in what you know in the formula triangle and it will tell you what to put into your calculator.

Examples: Find the missing side x



Labelling sides in respect to the 70° means The x will be A (adjacent to the angle) The 6cm is the H for Hypotenuse (longest side) And the top side will be O (Opposite the angle)

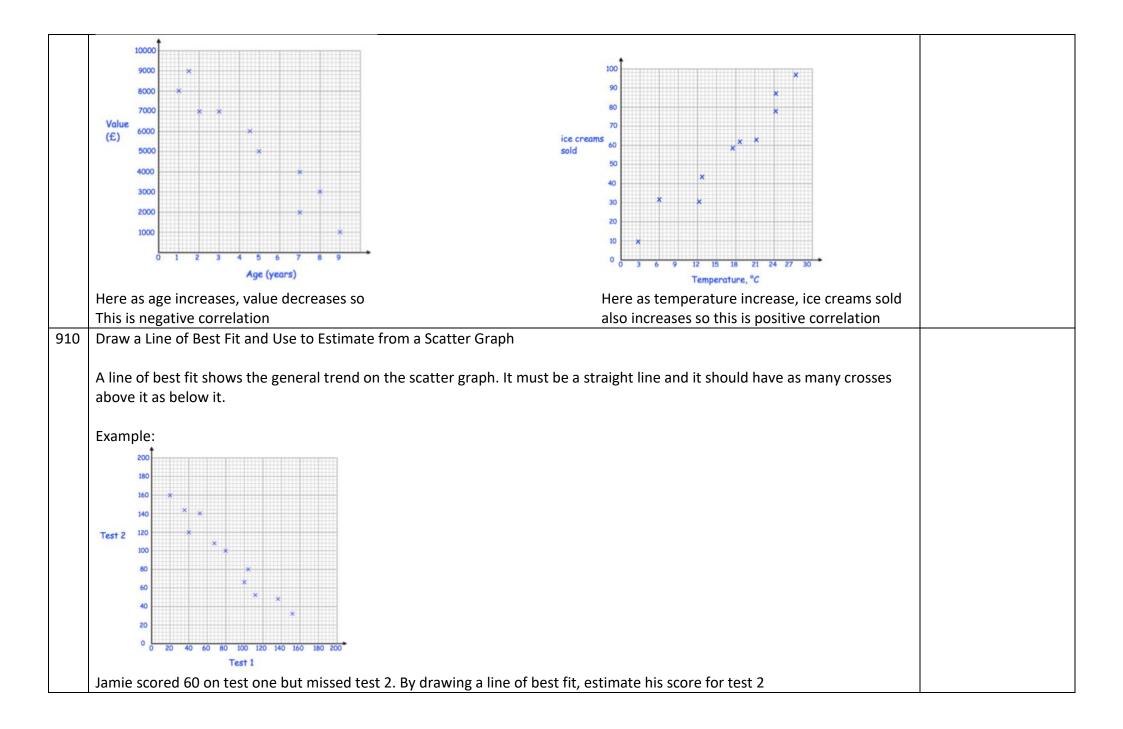
The 6cm and the x are important here, so we are Using A and H which means we use the Cosine triangle Filling in what we know gives us

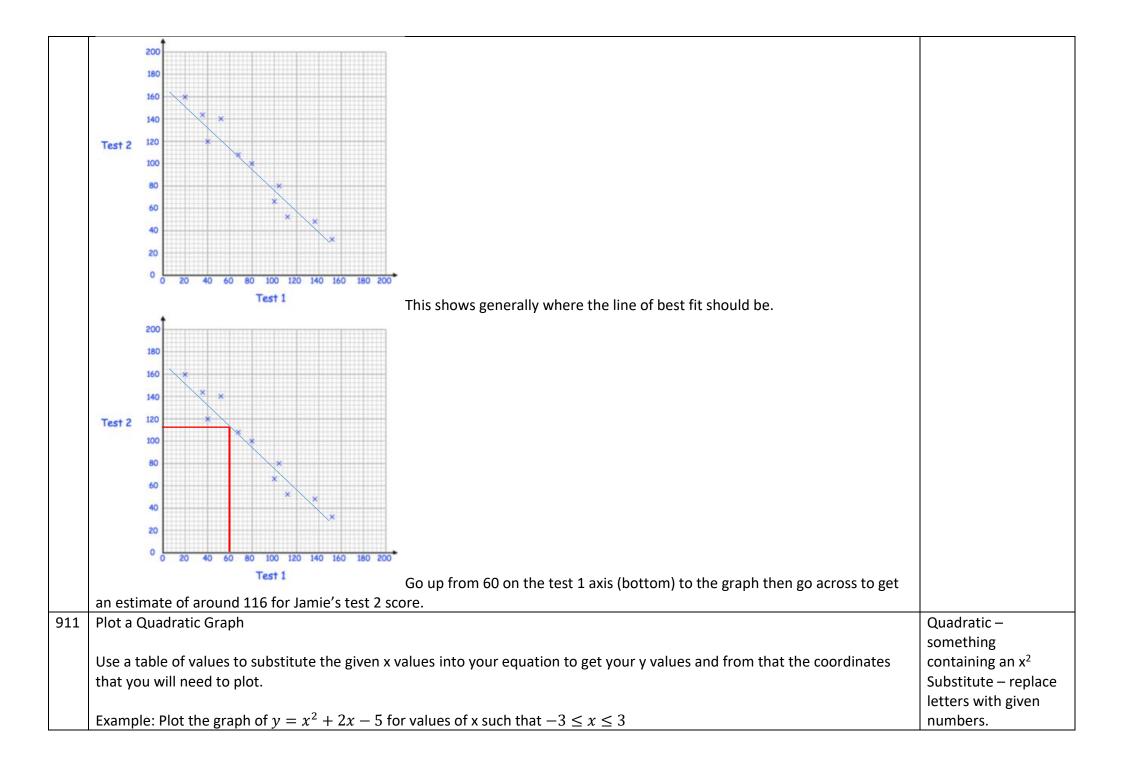
 $\cos(70) \times 6 = 2.05 cm$

Find the missing angle x

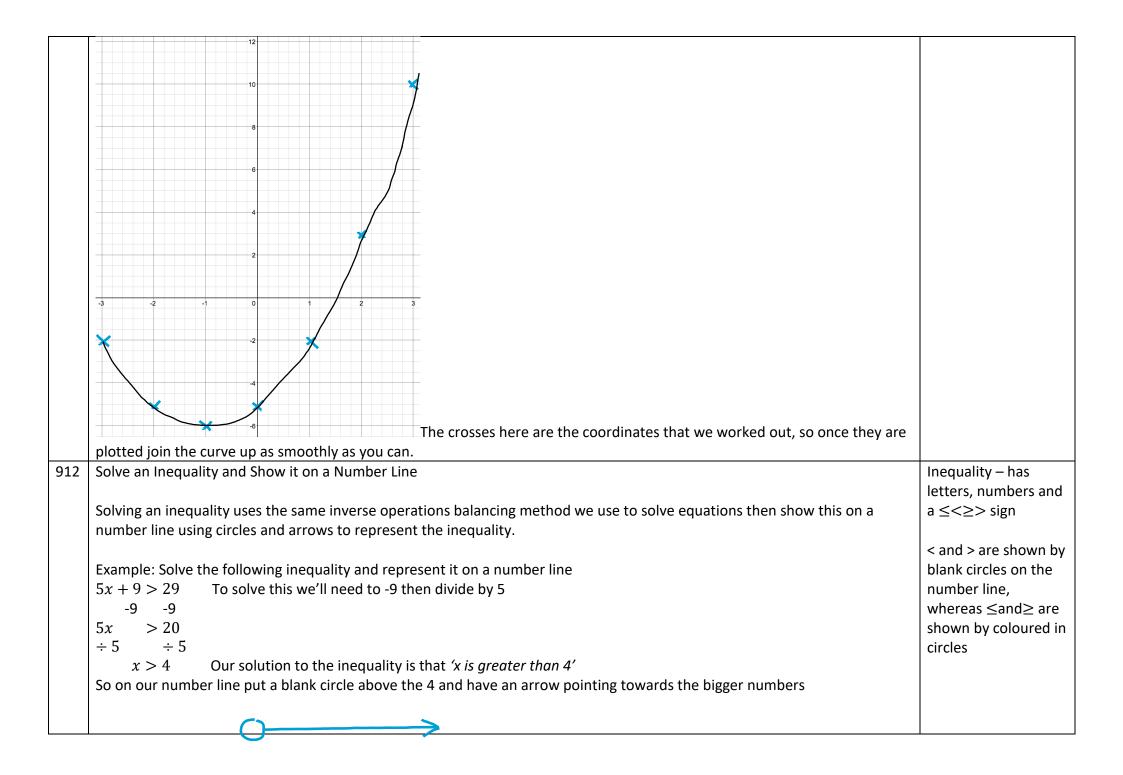
Labelling sides with respect the angle x means The 3cm will be O (opposite the angle) The 6cm will be A (adjacent to the angle) The diagonal/blank side will be H (Hypotenuse)

The 3cm and the 6cm are the important sides, so we are using A and O which means using the Tan triangle. Filling in what we know gives

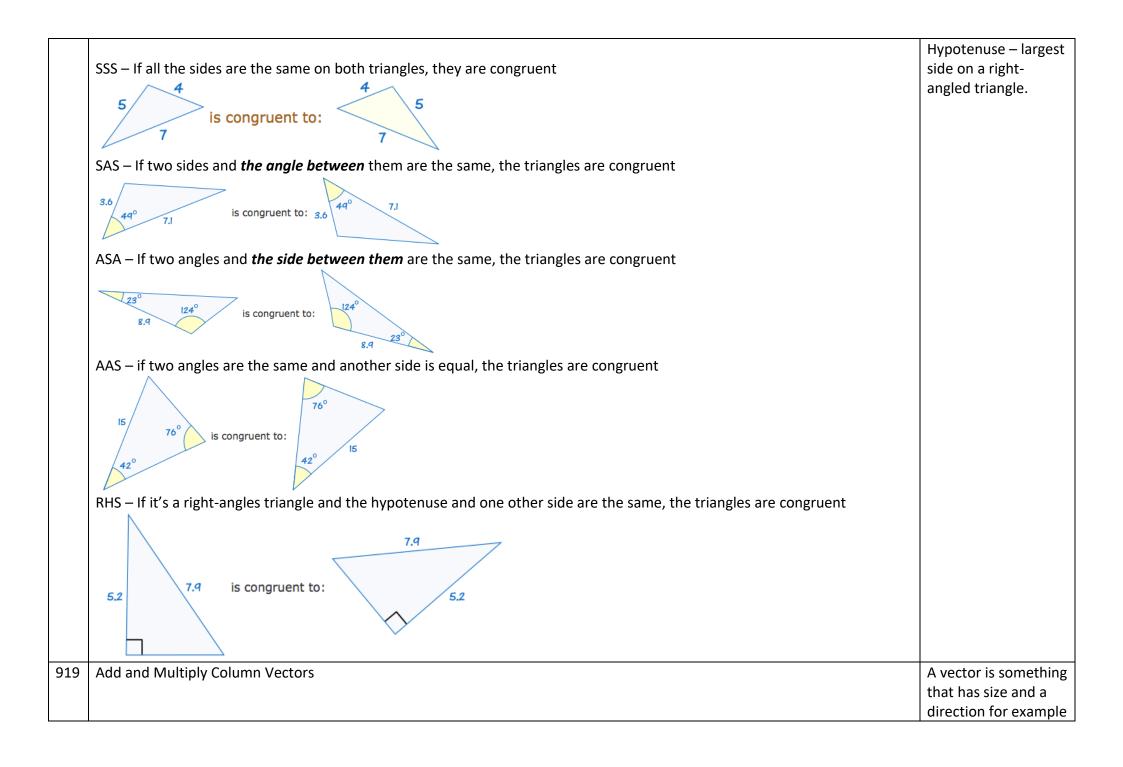

 $tan(x) = \frac{3}{6}$ To get x on its own here we need to do tan⁻¹ $tan^{-1}\left(\frac{3}{6}\right) = 27^{\circ}$ Trigonometry – the study of triangles Sin cos and tan are all trigonometric ratios. Hypotenuse – biggest side on a rightangled triangle. Opposite side – the side opposite the angle you're given in the question. Adjacent side – the side 'next to' the angle given to you in the question.

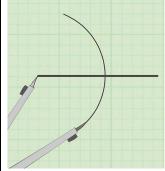

When finding a missing angle, the final step will require you to do an inverse of either sin, cos or tan. These are known as sin⁻¹ cos⁻¹ and tan⁻¹ (kind of like dividing by the ratios) these are done by pressing shift on the calculator following by the ratio you want to use.

904	Expand Double Brackets	Be really careful of
	Multiply both terms in the first bracket by both terms in the second bracket.	negatives when
	Use FOIL to remember this:(Firsts Outers Inners Lasts) if you need to.	expanding brackets
		like this.
	Example:	Only the two middle
	Expand $(x + 4)(x - 6)$	terms are like terms,
		remember an x term
	Firsts: x^2	and an x ² term are
	Outers: $-6x$	no alike.
	Inners: $+4x$	
	Lasts: -24	
	So, the initial expansion gives $x^2 - 6x + 4x - 24$	
	Which simplifies to $x^2 - 2x - 24$	
905	Solve a Quadratic Equation by Factorising	Factor pairs of a
		number multiply to
	To factorise into two brackets we have to find the pair of factors of the last term that will add to give the middle term. Once	give that number.
	we know the two brackets we use the inverse of each bracket to find our solutions to the equation.	Solutions to an
		equation are the
	Example: Solve	missing numbers that
		the letter can take to
	$x^2 - 3x - 10 = 0$. Look for a factor pair of ten that can make -3: 2 × 5	make the equation
		work.
	If we use +2 and -5 this will give us the -10 at the end of the equation and simplify to give the -3x	
	(x + 2)(x - 3) = 0 This is now factorised, but not solved. To solve it ask yourself how to make each bracket equal zero?	
	(x + 2) = 0 gives $x = -2$ $(x - 5) = 0$ gives $x = +5$ So, the solutions are x=-2 and x=5	
906	Draw and Use a Tree Diagram to Find Probabilities	
	Tree diagrams are used when one thing happens after another. In a tree diagram each group of branches always adds up to	
	1. Multiply along the branches of the tree to find the combined probabilities, then find the one(s) that you are looking for,	
	and add them up if there's more than one.	

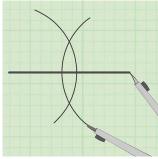

	Example: The probability Sara has coffee on a morning is 0.7 and the probability she has a muffin is 0.2 Find the probability she has neither a coffee or a muffin 0.2 mulf in = 0.14 0.3 coffee 0.9 mulf in = 0.06 0.3 coffee 0.9 mulf in = 0.06 0.3 coffee 0.9 mulf in = 0.24	
	The probability of not having a coffee and not having a muffin is 0.24	
907	Find the Equation of a Straight Line From Two Coordinate Points Remember that the equation of a straight line can be represented as $y = mx + c$ where m is the gradient and c is the y intercept. We need to find both m and c using the two points we are given. Example: find the equation of the line passing through the two points (2, 7) and (5, 19) Find the gradient between the two points first: $\frac{change in y}{change in x} = \frac{+12}{+3} = 4$ so, we know the equation is $y = 4x + c$	Equation – letters, numbers and an equals sign. Gradient – the slope of the line, found by doing $\frac{change in y}{change in x}$ y-intercept – where the line crosses the y axis
	Next sub one of the points (x,y) into your equation and solve to find c	Remember that every coordinate is
	Putting (2,7) into $y = 4x + c$ gives:	an x value and a y value (x, y)
	7 = 4(2) + c	
	7 = 8 + c. subtract 8 from both sides	
	-1 = c to find c then put both the gradient and the y intercept together as an equation	
	y = 4x - 1	

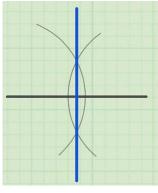
908	Solve a Pair of Linear Simultaneous Equations	Simultaneous
		Equations are
	Example: Solve	equations with two
	5x + 3y = 22	letters in each that
	2	have a single set of
	The method involves climinating the fetter in the made of each equation (the y in this case)	solutions, one for
	Multiply the top equation by the coefficient of the y on the bottom and vice versa	each letter.
	5x + 3y = 22 > 4	Linear means they do
	2x + 4y = 20 This will give a 12y in both equations, but remember to multiply the entire equation each time	not contain any
		powers on the letters
	20x + 12y = 88	
	6x + 12y = 60 Now both equations have a +12y in them we can subtract them to eliminate the ys	
	14x = 28 And solve to find the value of x	
	x = 2 We now know every x in the first equations was actually a 2, so sub this into one of them	
	Using the first equation at the top	
	5(2) + 3y = 22 5(2) means 5 x 2 so will give 10	
	$10^{\circ} + 3y = 22$ subtract 10 from each side	
	3y = 12 and solve	
	y = 4	
	So, our answer is x=2 and y=4	
909	Identify and Understand Positive and Negative Correlation	A variable is
		something we can
	Correlation is a link between two variables. It can be positive or negative. If it is positive it means that as one thing increase	measure.
	the other thing increases as well. If the correlation is negative it means that as one thing increases the other will decrease.	A scatter graph
	IT is important to understand that positive correlation is not the same as causation. An increase in one thing will not <i>cause</i>	shows two variables
	the other thing to change, just that from observation if one thing is bigger the other things usually is as well.	at once on a graph.
		Each cross
	We can spot correlation on scatter graphs:	represents two
		values, one for each
		variable

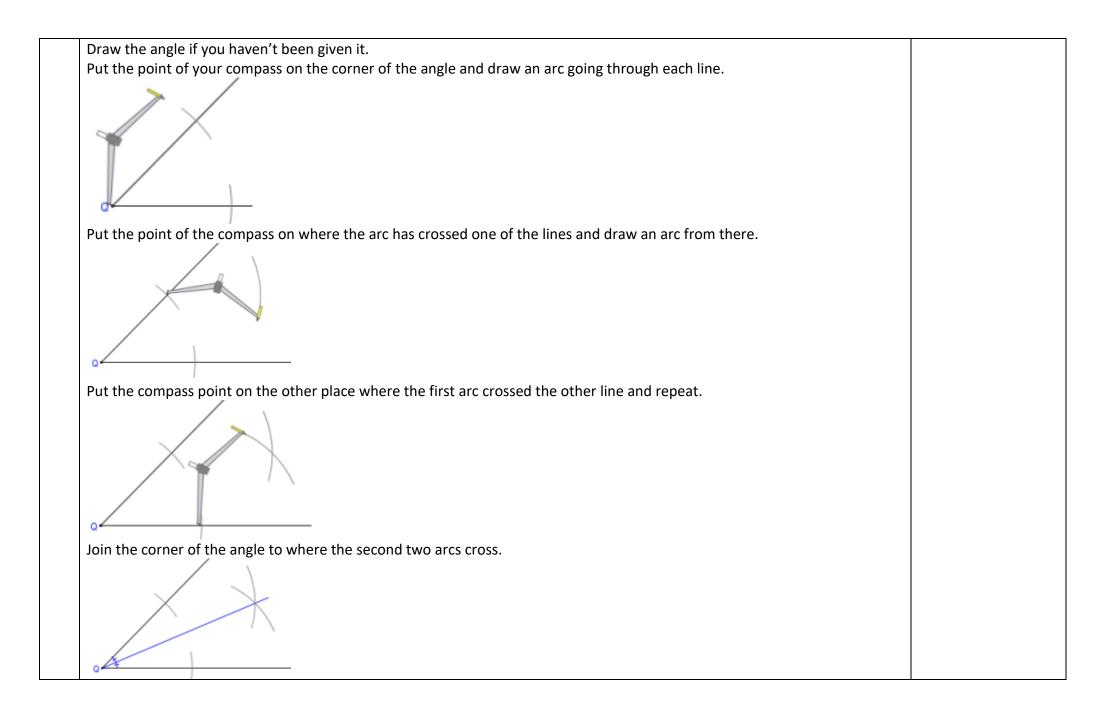

This means that we will sub in all the whole numbers from -3 up to 3 ($-3 \le x \le 3$)into the equation $y = x^2 + 2x - 5$ and then plot the coordinates this gives us on a graph and join the dots up to form a smooth curve.						Note: quadratic graphs will form a parabola. Parabolas					
Split the equation up into its terms x^2 , $+2x$ and -5 and give each one a row in the table, putting the x values (-3 to 3) along						are shaped like					
								tom row as this is the other parts added together and will give us our number for	smiles or frowns and		
the co	oordi	nate	each ⁻	time:					will be symmetrical.		
x	-3	-2	-1	0	1	2	3				
<i>x</i> ²											
+2x											
-5											
у								So we will now fill in each row by subbing the number on the top row into the			
expre	ssion	dow	n the	left ł	nand	side.	For e	xample $(-3)^2 (-2)^2 (-1)^2$ etc for the top row. Careful with your negatives here. As the -			
-								e -5 (we call this a constant term, the others are variable terms as they can change			
					,	depending on what x is.)					
x	-3	-2	-1	0	1	2	3				
$\frac{x}{x^2}$	-3 9	-2 4		0	1	2	3 9				
	_		-1	0	1 1 2						
<i>x</i> ²	9	4	-1 1	0	_	4	9				
$\frac{x^2}{+2x}$	9 -6	4 -4	-1 1 -2	0 0 0	2	4 4	9 6	Once each row is filled in. add the three parts of the equation together. So the first			
x ² +2x -5 y	9 -6 -5	4 -4 -5	-1 1 -2 -5	0 0 0 -5	2 -5	4 4 -5	9 6 -5	Once each row is filled in, add the three parts of the equation together. So the first s 4-4-5=-5 etc and write each answer in the v row along the bottom.			
x ² +2x -5 y colum	9 -6 -5 nn giv	4 -4 -5 Yes us	-1 1 -2 -5	0 0 -5 5=-2 1	2 -5	4 4 -5 econc	9 -5 I give	Once each row is filled in, add the three parts of the equation together. So the first s 4-4-5=-5 etc and write each answer in the y row along the bottom.			
$\begin{array}{c} x^{2} \\ +2x \\ -5 \\ y \end{array}$ colum	9 -6 -5 nn giv -3	4 -4 -5 ves us -2	-1 1 -2 -5 9-6-5 -1	0 0 -5 5=-2 1	2 -5 the se	4 -5 econc 2	9 -5 l give 3				
x ² +2x -5 y colum	9 -6 -5 nn giv	4 -4 -5 Yes us	-1 1 -2 -5	0 0 -5 5=-2 1	2 -5	4 4 -5 econc	9 -5 I give				
$ \begin{array}{c} x^{2} \\ +2x \\ -5 \\ y \end{array} $ colum $ \begin{array}{c} x \\ x^{2} \\ x^{2} \end{array} $	9 -6 -5 nn giv -3 9	4 -4 -5 /es us -2 4	-1 1 -2 -5 9-6- 1	0 0 -5 5=-2 1 0 0	2 -5 the se 1 1	4 -5 econc 2 4	9 -5 l give 3 9				
x^{2} $+2x$ -5 y colum x x^{2} $+2x$	9 -6 -5 nn giv -3 9 -6	4 -4 -5 7es us -2 4 -4	-1 1 -2 -5 9-6-5 -1 1 -2	0 0 -5 5=-2 1 0 0 0	2 -5 the se 1 1 2	4 4 -5 econc 2 4 4	9 6 -5 l give 3 9 6				
$ x^{2} + 2x + 2x -5 y $ colum $ x + 2x + 2x + 2x -5 y $	9 -6 -5 -1n giv -3 9 -6 -5 -5 -2	4 -4 -5 2 es us -2 4 -4 -5 -5	-1 1 -2 -5 5 9-6- 1 1 -1 1 -2 -5 -5 -6	0 0 -5 5=-21 0 0 0 -5 -5 -5	2 -5 the se 1 2 -5 -5 -2	4 4 -5 econc 2 4 4 -5 3	9 6 -5 8 9 6 -5 10				


	1 2 3	4 5 6 7 8	
913	Solve a 'Work Done' P	roblem	Direct proportion –
	Mark dana problems	require you to think using both direct properties and indirect properties	an increase
	-	require you to think using both direct proportion and indirect proportion. riables: things doing the work (people); time taken for the work to be done (time) and the amount of <).	(multiplying) on one thing will cause the same increase (multiplying in the
	No matter what order	other eg. If one doubles the other	
	•	directly proportional (the more people working on a job, the shorter the time taken to complete it), directly proportional (if the amount of work increases it will take longer to do it)	one doubles. Indirect proportions – an increase in one
	Example:		thing means an
		vorkers to unload 10kg of cargo.	decrease in the other by the same factor
	How long will it take 8	workers to unload 30 kg of cargo?	eg. If one thing is
	People Time Work		divided by 4 the
	4 6 10	Ignore the 10kg for the time being and work on getting the 'people' column to 8: divide the 4	other thing will be
	1 24 10	By 4 to get to 1, which means the 6 will be multiplied by 4 (indirectly proportional) then	multiplied by 4
	8 3 10	Multiply the people by 8 and divide the time by 8.	
		nat 8 workers will take 3 hours to unload 10kg, and we want to know how long it will take them to	
	-	now only work with the second 2 columns and ignore the first 'people' column.	
	8 3 10	Time and Work are directly proportional so if we want to get from 10kg of work to 30kg of	
	8 9 30	Work we'll need to multiply by 3, so the 3 hours will also be multiplied by 3	
	Therefore, our answer	is it will take 9 hours.	
914	Use Similarity to Find I	Vissing Sides on Shapes	Similar shapes are
			enlargements of
	•	maths, one is the enlargement of the other. So, find the scale factor and use this to find the missing	each other.
	side.		Scale factor – what
			you multiply the

	Example: The following shapes are similar, find the missing sides x and y	sides by to enlarge
	$6 \text{ cm} \underbrace{5 \text{ cm}}_{8 \text{ cm}} \underbrace{15 \text{ cm}}_{x} \underbrace{25 \text{ cm}}_{x}$ We have a pair of sides that are in the same place on the triangles, so doing 15 \text{ cm} \div 6 \text{ cm} will give us the scale factor $15 \div 6 = 2.5$	them. Once you've found the scale factor multiply to get sides on the larger shape and divide by the scale factor to get sides on the smaller shape.
	The side x is in the same place that the 8cm is on the <i>smaller</i> triangle so doing $8 \times 2.5 = 20 cm$ shows that x=20cm	
	The side y is in the same place as the 25cm on the <i>larger</i> triangle so doing $25 \div 2.5 = 10cm$ shows that y=10cm	
915	Calculate the Volume of a Sphere, Pyramid or Cone	None of these shapes
	These formulae are given on the exam paper, but it would be useful to memorise them. All you need to be able to do here really is put these into your calculator!	are prisms as they do not have the same cross section (shape) running through
	Volume of a sphere $=\frac{4}{3}\pi r^3$ Volume of a pyramid $=\frac{1}{3} \times length \times width \times height$ Volume of a cone $=\frac{1}{3}\pi r^2h$	them all.
	Notice that both the pyramid and cone formulae are effectively $\frac{1}{3}$ x the area of the base x height. This is because a cone is basically a circular based pyramid.	
	22cm 9cm 6cm 9cm 20cm 20cm	
	The 22cm here is the diameter Which means the radius will be 11cm:	


	$Volume = \frac{4}{3} \times \pi(11^3)$	Volume= $\frac{1}{3} \times 9 \times 6 \times 7$	Volume= $\frac{1}{3} \times \pi(7^2)(20)$	
	=5575.3cm ³	=126cm ³	=1026.3cm ³	
916	Identify and Continue a Fibonacci Sequence is where you sequence starts: 1, 1, 2, 3, 5, 8, 13, 21etc	equence find the next term by adding the previous two te	erms together. The famous Fibonacci	A Fibonacci sequence is where the next term is found by adding the previous two terms
	Example: Find the next two terms in 3, 6, 9, 15, 24, 39 We can see it's a Fibonacci as we ge	n this sequence t each next term by adding the previous two ter d together the final two terms given in the quest		
	that will be 39+63=102 So, the next two terms are 63 and 1			
917	Identify and Continue/Generate a C			Quadratic means it involves an n^2 and its
	Quadratic sequences only have a co	mmon difference (rule) when you look at the se	cond differences	won't have the same term to term rule
	For example: 2, 5, 10, 17, 26 has fi	rst differences 3, 5, 7 and 9, but second differences	ces of 2 each time, this makes it quadratic	each time. Frist differences – the difference between each term
	You can continue this sequence by a 11 so add 11 to 26 and it gives you a	spotting this patter and using it to get the next to 37 as the next term.	erm: then next first difference would be	in the sequence. Second difference – the differences
	Generating a Quadratic from its n^{th} Example: give the first 4 terms of th			between the first differences. n^{th} term the formula
	Remember that n is the one times t sequence	able $n = 1, 2, 3, 4$ so $n^2 = 1, 4, 9, 16$ adding 5 $n^2 + 5 = 6, 9, 14, 20$	to each of these will give us our	linking a terms position to its value
918	Know the Rules for Proving Congrue			Congruent shapes are identical to each
	There are five rules that prove cong	ruency. All involve abbreviations S=side A=angle		other.


	The tax a subscience of the second second second (1) as the failer between the second	(2 with a set in a
	The top number in a column vector tells you how many to go left (-) or right (+) and the bottom numbers tells you how many	'2 miles up' is a
	up (+) or down (-) to go so $\binom{3}{-5}$ means go 3 right and 5 down.	vector, 'west' is not a
	(-5)	vector.
	To add column vectors just add the top numbers and add the bottom numbers, to multiply a vector multiply both numbers	
	by the scalar.	A scalar is a quantity
	by the scalar.	used to 'scale up' or
		increase a vector: '3
	Example: Given the vectors $a = \begin{cases} 2 \\ 1 \end{cases}$ and $b = \begin{cases} -3 \\ 6 \end{cases}$	right, 4 up' with a
		scalar of 2 would give
	Calculate 2a+3b	'6 right, 8 up'
	Substitute the given vectors into the expression here and work out your answer as a column vector	Substitute means
	Substitute the given vectors into the expression here and work out your answer as a column vector	replace letters with
	(2) (-3)	numbers (in this case
	$2\binom{2}{1} + 3\binom{-3}{6}$ Multiply the first vector by its scalar or 2 and the second by its scalar of 3	vectors)
		Expression is
		something that has
	(4) , (-9) There exists a solution the term numbers and exists the better numbers	letters and numbers
	$\binom{4}{2} + \binom{-9}{18}$ Then add them by adding the top numbers and adding the bottom numbers	but no equals sign
		but no equals sign
	$\begin{cases} -5\\ 20 \end{cases}$	
920	Construct Angle and Line Bisectors	Construct means
		draw accurately
	To Bisect a Line:	using a compass and
		ruler.
	Draw the line, if you haven't been given it.	Bisect means to cut
	Set the compass to more than half the length of the line.	perfectly in half.
		An arc is part of a
		circle, you can draw
		full circles here if you
		want, but it
		complicates the
	4	diagrams a little bit if
		you do.
	Put the point on one end of the line and draw an arc from that point.	


Put the point in the other end and draw an arc from that point, crossing the first arc in two places.

Join where the arcs cross

Angle Bisector

